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A FRACTAL MODEL OF OCEAN SURFACE SUPERDIFFUSION

P.S. ADDISON, B. QU

Civil Engineering Group, School of the Built Environment, Napier
University, 10 Colinton Road, Edinburgh, EHI O 5DT, Scotland, UK.,

G. PENDER

Dept. of Civil Engineering, Glasgow University, Glasgow, Scotland, UK.

The transport of surface pollutants in the coastal zone is modelled using a modified particle tracking
diffusion model. The new model uses fractional Brownian motion (fBm) functions to produce
superdiffusive spreading of the synthesised pollutant clouds. The model is tested on a numerical
model of a coastal bay recirculation zone.

1 Introduction

The spread of pollutants in the environment is a topic of much research. Many
environmental pollutants are transported via turbulent fluids (in rivers, the oceans and the
atmosphere). The overall spreading of the pollutants in these turbulent flowfields is
generally non-Fickian (in fact superdiffusive) over some, if not all, length scales under
consideration. Traditional methods of modelling diffusive processes in the environment
rely on either solving an advection-diffusion equation on a computational grid or using a
particle-tracking technique" 3 . Both methods lead to solutions which are Fickian in nature.
The spatial correlations which exist over significantly large scales result in a Lagrangian
memory effects within the flow field. Recently the authors have developed a particle-
tracking technique that produces non-Fickian diffusion4"6. The technique works by
incorporating fractional Brownian motion (fBm) trajectories within the particle tracking
model. The work is motivated by the recent discovery that ocean surface drifter
trajectories are fractal in nature7 -9 . In this paper previous work is expanded and the
simulation of coastal diffusion in a numerically generated bay flow model is conducted.

2 The Non-Fickian Particle Tracking Model

Particle tracking models work by releasing a large number of massless marked particles
into a known flow-field. These are then diffused due to a Fickian diffusion model and
advected according to the spatial distribution of the flow-field. Each particle represents a
portion of the mass of the contaminant, and the ensemble particle cloud can be converted
into a spatial concentration distribution. The authors generate non-Fickian diffusive
behaviour of particle clouds within a particle tracking diffusion model by specifying each
particle path as a fractional Brownian motion (fBm). A generalisation of Brownian
motion, fl3m is a random fractal function defined by Mandelbrot and Van Ness '0 which
exhibits long term correlation over all scales. In this section we briefly give the algorithm
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for the generation of fBm, more specific details of the model are given by the authors
elsewhere, see for example .'.3.Fractional Brownian motion is defined as

BHt)=F(H+ 12)[o [(t-t')n-1/2-(-t')H-A].R(t').dt' + o.(t-t')l-y2.R).dt] (1)

where F is the gamma function and R(t) is a continuous white noise function. A discrete
approximation to Eq. (1) may be generated in two steps: Firstly, incremental steps in the
fBm walk are calculated using

BHQj)-BH(I, 1j) - )[[ (i-j) j I)H-Y2 R(Ib) + R(ti) (2a)

where M is a finite memory; and R(tj) are discrete random numbers with a Gaussian
distribution of known standard deviation and zero mean. (Note that simpler distributions
may be used.) These incremental steps are known as fractional Gaussian noise (fGn) -
generalisations of white noise. The fGn is then summed to generate fBm at discrete times
ti (=At x i)

BH(t00 = 2: [BH(00 - B (N _,)]. (2b)
k=1

Eqs. (2a) and (2b) may then be used to specify the displacement-time behaviour of
individual particles in each spatial dimension of the diffusive problem under investigation.
This requires an independent realisation of the fBm for each spatial co-ordinate. Carrying
this out for each particle in a diffusing cloud results in scaling of standard deviation of the
cloud, ou, of the form

- = (2- ,f-)" (3)

(here we do not include advection), where Kf is the fractal (anomalous) diffusion
coefficient and H is the Hurst exponent14
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Figure 1: Clouds of 20 fBm Traces H = 0.2, 0.5, 0.8. (Note: Different Scales on

Vertical Axes.).

Fig. 1 shows the diffusion of clouds of fBm (H-0.2, 0.5 and 0.8) from a point source. The
respective subdiffusive and superdiffusive nature of the H=0.2 and 0.8 IBm is evident in
the plot. In order to generate the IBm in two (or more) spatial directions an IBm trace is
used for each independent co-ordinate. Figure 2 contains 2D IBm spatial trajectories for
single particles. Again the subdiffusive nature of the H=0.2 path and superdiffusive nature
of the H=0.8 path can be seen. The particle tracking model works by releasing many
1000's of particles utilising their ensemble spreading behaviour.
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Figure 2: Two-Dimensional fBm trajectories.

The finite memory, M, of the synthesised Mim is an important factor that must be taken
account of when generating the fBm using the above method. Memories that are too low
result in a poor representation of the fBm over the problem timescale. Figure 3 shows the
effect of low memory on the resulting power law of the diffusing cloud. In the figure a 100
step fl3m is generated using memories from 100 to 2000 steps, i.e. from one times the
length of each component trace to twenty times the length of each trace. The gradual
straightening of the curve is evident from the plot indicating that the synthesised MIm
realises the scaling power law (Eq. 3) as the memory increases. The authors have found
that a memory of approximately 5 times the problem lengthscale is suitable for most
practical applications.
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Figure 3:a "H versus time for various values of memory M.

3 Dispersion in a Coastal Bay

Fig. 4 shows a numerically generated surface velocity field for a coastal bay with a North-
South flow. This main flow causes a recirculation zone within the bay itself. In such
complex flow-fields the relative change in the velocity vectors (magnitude and direction)
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can cause additional dispersion of the pollutant cloud to take place. This effect is known
as shear dispersion.
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Figure 4: Coastal Bay Model, Surface Velocity Vector Plot.

Fig. 5 shows the comparison of two synthesised pollutant clouds, released in the bay, as
they are dispersed over time. The left hand plots for each pair contains the
isoconcentration contours of a Fickian cloud (H=0.5) and the right hand plots for a
superdiffusive (H=0.8) cloud. Within the bay itself we see that the non-Fickian cloud
spreads much more rapidly than the (traditional) Fickian cloud. This rapid spreading can
result in areas being affected that would otherwise escape contamination with the Fickian
model. In addition, lower concentrations are reached much sooner with the superdiffusive
cloud but a larger area is affected. This has implications for the modelled biological
impact of the pollutant on the environment, especially for those organisms whose
mortality depends on a threshold concentration of contaminant.
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Figure 5: Comparison of Fickian (H = 0.5) and Non-Fickian (H = 0.8) Contaminant
Clouds Released from (1300, 2800) at Time Zero. Plots show location of cloud after l, 2,
3, 4, 7, 1 0 hours.
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4 Concluding Remarks

The non-Fickian particle tracking diffusion model developed by the authors allows for a
more flexible approach than currently available to the modelling of contaminant transport
within turbulent flowfields. The model has been illustrated using a coastal bay flow-field,
however, it has general applications to non-Fickian diffusive processes in one, two or
three dimensions. (The authors have developed a version for subsurface diffusion through
material of variable hydraulic conductivities"2'l"). In the study, detailed above, the effects
of shear dispersion, wind shear and tidal motions were neglected. In a fully working
model these important dispersive processes would have to be taken account of.

One drawback of the model is that H is restricted to vary between 0 and 1. However, it
is known that diffusive processes on the open ocean (i.e. far from boundaries) can scale
with Hurst exponents up to 1.5. It is possible that by incorporating shear dispersion, super-
diffusive processes may be realised with effective exponents above unity. Another
drawback of the model is that the fBm generation method, given by Eqs. (2a) and (2b),
requires a heavy computational effort. This is because each fGn requires a summation
over M time steps, where the memory M must be of the order of (at least) five times the
duration of the problem under investigation to ensure accurate non-Fickian statistics over
the problem timescale. The authors have recently developed faster spectral methods of
generating fBm based on the work of Yin16. Current work by the authors concentrates on
the both the effect of shear dispersion on fmm dispersive processes and the
implementation of the fMm particle tracking model to a fully three dimensional numerical
model with experimental verification.
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